Trees whose domination subdivision number is one
نویسندگان
چکیده
A set S of vertices of a graphG = (V,E) is a dominating set if every vertex of V (G)\S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. The domination subdivision number sdγ(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Velammal in his Ph.D. thesis [Manonmaniam Sundaranar University, Tirunelveli, 1997] showed that for any tree T of order at least 3, 1 ≤ sdγ(T ) ≤ 3. Furthermore, Aram, Favaron and Sheikholeslami, recently, in their paper entitled “Trees with domination subdivision number three,” gave two characterizations of trees whose domination subdivision number is three. In this paper we characterize all trees whose domination subdivision number is one.
منابع مشابه
On the domination subdivision numbers of trees
A set D of vertices of a graph G is a dominating set if every vertex in V \D is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality of a dominating set of G. The domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the domination number. Arumugam h...
متن کاملTotal Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملDomination subdivision numbers of trees
A set S of vertices of a graph G = (V, E) is a dominating set if every vertex of V (G) \ S is adjacent to some vertex in S. The domination number γ (G) is the minimum cardinality of a dominating set of G. The domination subdivision number sdγ (G) is the minimum number of edges that must be subdivided in order to increase the domination number. Velammal showed that for any tree T of order at lea...
متن کاملThe convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملTrees with domination subdivision number one
The domination subdivision number sdγ(G) of a graph G is the minimum number of edges that must be subdivided to increase the domination number of G. We present a simple characterization of trees with sdγ = 1 and a fast algorithm to determine whether a tree has this property.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 40 شماره
صفحات -
تاریخ انتشار 2008